ECE1: Correction du D.M. n°7: Ecricome 2008

1. a) $\lim_{x \to -1} \ln(x+1) = -\infty$ donc $\lim_{x \to -1} h(x) = +\infty$ La droite d'équation x=-1 est asymptote verticale à C_h .

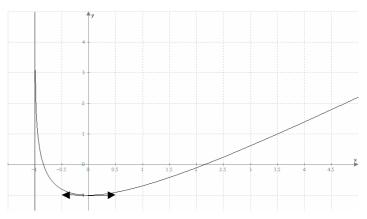
$$x - \ln(x+1) - 1 \sim_{+\infty} x \text{ donc } \lim_{x \to +\infty} h(x) = +\infty \quad \frac{h(x)}{x} \sim_{+\infty} \frac{x}{x} \sim_{+\infty} 1 \text{ donc } \lim_{x \to +\infty} \frac{h(x)}{x} = 1$$

$$h(x) - x = -\ln(x+1) - 1 \text{ donc } \lim_{x \to +\infty} h(x) - x = +\infty$$

 C_h admet une branche parabolique de direction la droite d'équation y = x.

b)
$$\forall x \in]0; +\infty[, h'(x) \ 1 - \frac{1}{1+x} = \frac{x}{1+x}]$$

			1	1 /1 1 /	,
X	-1	0		+∞	
h _p '(x)	_	- 0	+		
h _p (x)	+ ∞			+∞	
-	_				
	-1				



2 La fonction h est continue sur $]0; +\infty[$, strictement croissante, et $0 \in]-1; +\infty[$. Donc d'après le théorème de la bijection, l'équation $h(x) = 0 \ (\Leftrightarrow f(x) = x)$ admet une unique solution $\alpha \in]0; +\infty[$. 3. $_u_0 = 1$ donc $u_0 \ge 1$

 $_$ si $u_n \ge 1$ alors $1 + u_n \ge 2$ $ln(1 + u_n) \ge ln(2)$ $1 + ln(1 + u_n) \ge 1 + ln(2) \ge 1$ donc $u_{n+1} \ge 1$. Donc \forall $n \in \mathbb{N}$, $u_n \ge 1$.

$$4 \ f'(x) = \frac{1}{1+x} \ donc \ si \ x \ge 1 \ 1+x \ge 2 \ 0 \le \frac{1}{1+x} \le \frac{1}{2} \ donc \ sur \ [1; +\infty[, \left| f'(x) \right| \le \frac{1}{2}]$$

De plus, $u_n \in [1; +\infty[$ et $\alpha \in [1; +\infty[$ donc d'après l'inégalité des accroissements finis,

$$\left| \left| f(u_n) - f(\alpha) \right| \leq \frac{1}{2} \left| \left| u_n - \alpha \right| \right| \iff \left| \left| u_{n+1} - \alpha \right| \leq \frac{1}{2} \left| \left| u_n - \alpha \right| \right|$$

Montrons par récurrence que \forall $n \in \mathbb{N}$, $\left|u_n - \alpha\right| \le \frac{1}{2^{n-1}}$

pour n = 0: $\left| u_0 - \alpha \right| = \left| 1 - \alpha \right| = \alpha - 1 \le 2$ car $\alpha \le 3$ $\frac{1}{2^{0-1}} = 2$ La propriété est vraie au rang 0.

_ supposons que $\left|u_n - \alpha\right| \le \frac{1}{2^{n-1}}$ alors $\left|u_{n+1} - \alpha\right| \le \frac{1}{2} \left|u_n - \alpha\right| \le \frac{1}{2} \times \frac{1}{2^{n-1}} = \frac{1}{2^n}$ La propriété est

 $\text{h\'er\'editaire.} \qquad \quad \text{Donc } \forall \ n \in {\rm I\! N}, \, \left| u_n - \alpha \right| \leq \frac{1}{2^{n-1}}.$

5.
$$\forall n \in \mathbb{N}, 0 \le \left| u_n - \alpha \right| \le \frac{1}{2^{n-1}}$$
.

 $\lim_{n\to +\infty}\frac{1}{2^{n-1}}=0 \text{ donc d'après le th\'eor\`eme des gendarmes}, \lim_{n\to +\infty}\left|u_n-\alpha\right|=0 \quad \lim_{n\to +\infty}u_n=\alpha.$